Pneumatische Robotik trifft auf künstliche Intelligenz

Ob greifen, halten oder drehen, tasten, tippen oder drücken – im Alltag nutzen wir unsere Hände wie selbstverständlich für die unterschiedlichsten Aufgaben. Dabei ist die menschliche Hand mit ihrer einzigartigen Kombination aus Kraft, Geschicklichkeit und Feinmotorik ein wahres Wunderwerkzeug der Natur. Was liegt da näher, als Roboter in kollaborativen Arbeitsräumen mit einem Greifer auszustatten, der diesem natürlichen Vorbild nachempfunden ist und durch künstliche Intelligenz lernen kann, verschiedene Aufgaben zu lösen? Festo zeigt auf der Hannover Messe 2019 die pneumatische Roboterhand BionicSoftHand. Kombiniert mit dem BionicSoftArm, einem pneumatischen Leichtbauroboter, eignen sich die Future Concepts für die Mensch-Roboter-Kollaboration.

Damit die BionicSoftHand sicher und direkt mit dem Menschen interagieren kann, wird sie pneumatisch betrieben. Im Gegensatz zur menschlichen Hand besitzt die BionicSoftHand keine Knochen. Ihre Finger bestehen aus flexiblen Balgstrukturen mit Luftkammern. Umschlossen sind die Bälge in den Fingern von einem speziellen 3D-Textilmantel, der sowohl aus elastischen als auch hoch festen Fäden gestrickt ist. Damit kann über das Textil genau bestimmt werden, an welchen Stellen die Struktur sich ausdehnt und damit Kraft entfaltet und wo sie an der Ausdehnung gehindert wird. Dadurch ist sie leicht, nachgiebig, anpassungsfähig und sensibel, aber dennoch in der Lage, starke Kräfte auszuüben.

Künstliche Intelligenz
Die Lernmethoden von Maschinen sind mit denen des Menschen vergleichbar: ob positiv oder negativ – sie benötigen eine Rückmeldung auf ihre Aktionen, um diese einordnen zu können und daraus zu lernen. Bei der BionicSoftHand kommt die Methode des Reinforcement Learning zum Einsatz, das Lernen durch Bestärken.

Das bedeutet: Statt einer konkreten Handlung, die sie nachahmen muss, bekommt die Hand lediglich ein Ziel vorgegeben. Dieses versucht sie durch Ausprobieren (Trial-and-Error) zu erreichen. Anhand des erhaltenen Feedbacks optimiert sie nach und nach ihre Aktionen, bis sie schließlich die gestellte Aufgabe erfolgreich löst.

Konkret soll die BionicSoftHand einen zwölfseitigen Würfel so drehen, dass am Ende eine vorher festgelegte Seite nach oben zeigt. Das Einlernen der dazu nötigen Bewegungsstrategie geschieht in einer virtuellen Umgebung anhand eines digitalen Zwillings, der mithilfe der Daten einer Tiefenkamera und den Algorithmen der künstlichen Intelligenz erstellt wird.

Proportionale Piezoventile für eine präzise Regelung
Um den Aufwand für die Verschlauchung der BionicSoftHand möglichst gering zu halten, haben die Entwickler eigens eine kleinbauende, digital geregelte Ventilinsel konstruiert, die direkt unterhalb der Hand angebracht ist. Dadurch müssen die Schläuche zur Ansteuerung der Finger nicht durch den kompletten Roboterarm gezogen werden. So lässt sich die BionicSoftHand mit nur je einem Schlauch für Zuluft und Abluft schnell und einfach anschließen und in Betrieb nehmen. Mit den eingesetzten proportionalen Piezoventilen lassen sich die Bewegungen der Finger präzise regeln.

BionicSoftArm: Ein Roboterarm, viele Variationsmöglichkeiten
Die strikte Trennung zwischen der menschlichen Arbeit und den automatisierten Aktionen von Robotern wird zunehmend aufgehoben. Ihre Arbeitsbereiche verschmelzen zu einem kollaborativen Arbeitsraum, in dem vor allem Roboter gefragt sein werden, die sich flexibel anpassen lassen und sich auf unterschiedliche Szenarien einstellen. Mit dem BionicSoftArm, einem flexiblen, pneumatischen Roboterarm, können in Zukunft Mensch und Maschine gleichzeitig dasselbe Werkstück bearbeiten, ohne dass sie voneinander abgeschirmt werden müssen.

Der BionicSoftArm ist eine kompakte Weiterentwicklung des BionicMotionRobot von Festo, dessen Anwendungsspektrum deutlich erweitert wurde. Möglich macht das sein modularer Aufbau: Er lässt sich bis zu sieben pneumatischen Balgsegmenten und Drehantrieben kombinieren. Damit ist er in Reichweite und Beweglichkeit maximal flexibel und kann bei Bedarf auch auf engstem Raum um Hindernisse herum arbeiten. Gleichzeitig ist er von Grund auf nachgiebig und kann gefahrlos mit dem Menschen zusammenarbeiten. Eine direkte Mensch-Roboter-Kollaboration ist mit dem BionicSoftArm ebenso möglich wie der Einsatz in klassischen SCARA-Anwendungen, zum Beispiel Pick-and-Place-Aufgaben.

Flexible Anwendungsmöglichkeiten
Je nach Aufbau und montiertem Greifer lässt sich der modulare Roboterarm für die verschiedensten Anwendungen nutzen. Seine nachgiebige Kinematik erleichtert ihm die Anpassung an unterschiedliche Aufgaben an wechselnden Orten: Der Wegfall aufwendiger Sicherheitseinrichtungen wie Käfige oder Lichtschranken verkürzt die Umbauzeiten und ermöglicht so einen flexiblen Einsatz – ganz im Sinne einer wandlungsfähigen und wirtschaftlichen Fertigung.

BionicFinWave: Unterwasserroboter mit einzigartigem Flossenantrieb
Die Natur lehrt uns eindrucksvoll, wie die optimalen Antriebssysteme für bestimmte Schwimmbewegungen aussehen. Um sich fortzubewegen, erzeugen Meeresstrudelwurm und Sepia mit den Flossen eine durchgängige Welle, die sich entlang ihrer gesamten Länge voranschiebt. Für den BionicFinWave hat sich das Bionik-Team von dieser undulierenden Flossenbewegung inspirieren lassen. Die Undulation drückt das Wasser nach hinten, wodurch ein Vorwärtsschub entsteht. Mit diesem Prinzip manövriert sich der BionicFinWave vorwärts oder rückwärts durch ein Rohrsystem aus Acrylglas.

Seine beiden Seitenflossen sind komplett aus Silikon gegossen und kommen ohne Verstrebungen oder andere Stützelemente aus. Die beiden Flossen sind links und rechts jeweils an neun kleinen Hebelarmen befestigt, die wiederum von zwei Servomotoren angetrieben werden. Zwei anliegende Kurbelwellen übertragen die Kraft auf die Hebel, sodass sich die beiden Flossen individuell bewegen lassen und unterschiedliche Wellenmuster generieren können. Sie eignen sich besonders für eine langsame und präzise Fortbewegung und wirbeln weniger Wasser auf als beispielsweise ein Schraubenantrieb. Damit die Kurbelwellen entsprechend flexibel und biegsam sind, sitzt zwischen jedem Hebelsegment ein Kardangelenk. Dazu wurden die Kurbelwellen inklusive der Gelenke und des Pleuels aus Kunststoff in einem Stück im 3D-Druck-Verfahren gefertigt.

Intelligentes Zusammenspiel verschiedenster Komponenten
Auch die restlichen Körperelemente des BionicFinWave sind im 3D-Verfahren gedruckt. Mit ihren Hohlräumen fungieren sie als Auftriebskörper. Gleichzeitig ist hier auf engstem Raum die gesamte Steuerungs- und Regelungstechnik wasserdicht und sicher verbaut und aufeinander abgestimmt.

Neue Impulse und Denkansätze für die Prozessindustrie
Mit dem bionischen Technologieträger setzt unser Bionic Learning Network einmal mehr einen Impuls für die zukünftige Arbeit mit autonomen Robotern und neuen Antriebstechnologien im Einsatz in flüssigen Medien. Denkbar wäre es, Konzepte wie den BionicFinWave für Aufgaben wie Inspektionen, Messreihen oder Datensammlungen weiterzuentwickeln – etwa für die Wasser- und Abwassertechnik oder andere Gebiete der Prozessindustrie.
www.festo.de

| News
Ausgabe:

Das könnte Sie auch Interessieren

Bild: SEW-Eurodrive GmbH & Co KG
Bild: SEW-Eurodrive GmbH & Co KG
RBG to go

RBG to go

Container haben ein praktisches Format und lassen sich vielseitig verwenden – auch als Kühllager, als Büro, als Forschungsstation in der Antarktis oder sogar als Tiny-House. Bei den meisten dieser Anwendungen wird vor allem der vorhandene Raum ausgenutzt. Eine Gemeinschaftsentwicklung von SEW-Eurodrive und Inperfektion verfolgte jedoch ein ganz besonderes Ziel: ein vollständig automatisiertes Regalbediengerät (RBG), das in einem Seecontainer eingebaut ist und somit flexibel bewegt werden kann.